If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+1.5x=0
a = 0.5; b = 1.5; c = 0;
Δ = b2-4ac
Δ = 1.52-4·0.5·0
Δ = 2.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{2.25}}{2*0.5}=\frac{-1.5-\sqrt{2.25}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{2.25}}{2*0.5}=\frac{-1.5+\sqrt{2.25}}{1} $
| -5(6-2x)=20 | | 110=-3(-8+4n)+2 | | √10x-4x=√2x-3 | | 7r-7(7r+7)=-133 | | x=4+0.5(10+0.5x) | | 0.08(×-100)=83.5-0.07x | | -16x+13=-20x-23 | | x-5=4+4x | | -166=-8(-3b-1)-6 | | 6x-10=5x3x+6 | | -88=-7(4+2k)+2k | | -x+5=19+6x | | -88=-7(4+2k)+k | | 6k=35 | | 2/3(9x+3)=14 | | 7x-3=93-x | | 94=2x+2(2x-4) | | 6p=p+55 | | 15/80=x/1600 | | 4(7-2x)=92 | | 4(x−1)+4x−1= 19 | | 6(x-10)=15x+6 | | 4(7-2x)=82 | | -5(w+4)+9=-46 | | 6x-10=15x+6 | | 7x-3=19+6x | | 3x-7=-22+6x | | 6.2x-19.1/83.72=0.195 | | 5/6=(x-10/3x+6) | | n-18=3 | | 42-x=12+3x | | 2(x+9)-4=14 |